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A model of a randomly disordered system with site-diagonal random energy 
fluctuations is introduced. It is an extension of Wegner's n-orbital model to 
arbitrary eigenvalue distribution in the electronic level space. The new feature is 
that the random energy values are not assumed to be independent at different 
sites, but free. Freeness of random variables is an analog of the concept of inde- 
pendence for noncommuting random operators. A possible realization is the 
ensemble of randomly rotated matrices at different lattice sites. The one- and 
two-particle Green functions of the proposed Hamiltonian are calculated 
exactly. The eigenstates are extended and the conductivity is nonvanishing 
everywhere inside the band. The long-range behavior and the zero-frequency 
limit of the two-particle Green function are universal with respect to the eigen- 
value distribution in the electronic level space. The solutions solve the CPA 
equation for the one- and two-particle Green function of the corresponding 
Anderson model. Thus our (multisite) model is a rigorous mean-field model for 
the (single-site) CPA. We show how the Lloyd model is included in our model 
and treat various kinds of noises. 

KEY WORDS: Disordered systems; random matrices; coherent-potential 
approximation. 

1. I N T R O D U C T I O N  

D u r i n g  the  last  decades  r a n d o m l y  d i s o r d e r e d  sys tems  have  g a i n ed  m u c h  

in teres t  in s ta t is t ical  physics .  Especia l ly  since A n d e r s o n ' s  p a p e r  tl~ in 1958 

these sys t ems  have  a t t r a c t e d  m a n y  phys ic is t s  due  to  the loca l iza t ion  

p h e n o m e n o n .  H o w e v e r ,  real ist ic  mul t i s i t e  m o d e l s  like the  A n d e r s o n  m o d e l  
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are in general unsolvable beyond the one-dimensional case. Exact calcula- 
tions are only possible in one pathological case--namely for the Lloyd 
model c2~ with Cauchy-distributed disorder. 

The Anderson model describes the hopping of an electron in a 
d-dimensional disordered lattice Z a. The Hamiltonian is 

H = H0 + H1 

where Ho is the deterministic, translational-invariant Hamiltonian 

(1.1) 

n o =  ~. vl,_,, I I r ) ( r ' l  (1.2) 
r, r'  ~ Z d 

and where the random disorder is assumed to be diagonal in the sites and 
independent between different sites, i.e., 

Hi= ~ f~lr><rl (1.3) 
r E Z  d 

with f ,  being identically distributed, independent random variables. 
Although HI is a quite simple operator, its relation to H 0 is complicated 
and in the present form the Anderson model is not exactly solvable. 

To circumvent this dilemma, two strategies have been developed: One 
is to approximate the multisite model by single-site models which can be 
solved exactly~3-7~; the other is to develop models which become exactly 
solvable in the mean-field limit of infinite dimension d, infinite interaction 
range R, or infinite number of angular momentum states n at each lattice 
site. ~8'9~ Among the former the most realistic ones are those single-site 
models which apply the coherent-potential approximation (CPA)IS-7); 
among the latter Wegner's n-orbital model ~8~ is most frequently studied. 
Wegner's generalization of the Anderson model consists in putting n elec- 
tronic states at each site and describing the disorder by Gaussian random 
matrices in the electronic states. Whereas for n = 1 this reduces to the 
Anderson model with Gaussian disorder, the opposite limit n ~ ov becomes 
exactly solvable. Interestingly, this solution coincides with a CPA solution 
of the Anderson model where the single-site disorder is distributed accord- 
ing to Wigner's semicircle law. ~1~ ~l~ 

This fact has gained much interest in the debate about the range of 
validity of the CPA and its connection with the mean-field models. As men- 
tioned by Khorunzhy and Pastur, tg~ the infinite-d, -R, and -n limits do not 
coincide with the CPA in general; however, they have similar properties. 

The starting point of our investigation is the following observation: 
The main reason for the difficulty in solving the Anderson model is that the 
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assumption of independence of the f r  at different sites cannot be translated 
into a tractable relation between Ho and H1. Hence, in our approximation 
of the Anderson model, we replace the assumption of independence by a 
"noncommutative" independence: we assume the f~ to be free. Freeness has 
been introduced in mathematics in the context of von Neumann algebras 
by Voiculescu t~2) and has been extended to noncommutative probability 
theory by Voiculescu {12-t6) and Speicher. r The assumption of freeness 
will allow us to calculate all physical quantities in our model exactly. 

Freeness and random matrices are intimately connected with each 
other: Arbitrary Hermitian n x n matrices randomly rotated against each 
other--via unitary random matrices--are in the limit n ~ oo a possible 
representation of free random variables, c 14, 20) This relation will provide the 
following concrete realization of our modelt21): At each lattice site r we 
have 17 electronic levels Ir~) numbered by ~ =  1 ..... n. Let 
f =  ((oq f Ifl))~,p= i be a fixed operator in the electronic level space and 
put 

f~:= uJut~ (1.4) 

where the ur are unitary random matrices in the electronic level space 
chosen independently for different sites r. This means that we act at each 
site r with a copy fr  of the given operator f ,  but that the basis for fr  and 
the basis for fr, are rotated randomly against each other for all pairs of 
different sites r # r'. 

From this point of view our model has a mean-field character and can 
be considered as a generalization of Wegner's n-orbital model ts) to 
arbitrary eigenvalue distributions in the electronic level space. In his 
original formulation, Wegner chose the f r  = ((1/v/-n) f~#)~, a= l as Gaussian 
random matrices at each r, such that the entries f r  and f~, are independ- 
ent for different sites r # r'. Thus in the limit n ~ or, he was restricted to 
Wigner's semicircular eigenvalue distribution, t ~o. ,~ It is this last restriction 
which we will show to be the reason that the CPA and the hitherto con- 
sidered mean-field models coincide only for the semicircle distribution. On 
the contrary, we can show that the solution of our model and the solution 
of the corresponding Anderson model in the CPA approximation coincide 
always if the dis~)rder is distributed according to the same distribution in 
both cases. Thus our (multisite) model is a rigorous mean-field model for 
the (single-site) CPA. 

The long-range behavior and the zero-frequency limit of the two-par- 
ticle Green function are universal with respect to the eigenvalue distribu- 
tion in the electronic level space. Independently of the distribution of the 
disorder we find Wegner's result for the Gaussian ensemble tS~ that (i) 
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eigenstates separated by an energy co are correlated over a length L which 
diverges like Icol-,/2 for co--* 0, and (ii) the two-particle Green function for 
energies in opposite halves of  the complex place differing by co approaches 
a constant  for d >  2, diverges logarithmically for d =  2, and like lco[ a/2- ~ for 
0 < ~ d < 2 .  

The paper is organized as follows: In Section 2 we introduce the con- 
cept of  free random variables and outline their connection with random 
matrices and their description by noncrossing cumulants. In Section 3 we 
introduce our  model and calculate the one- and two-particle Green func- 
tion and the conductivity exactly. Section 4 is devoted to the connection of 
our model with the CPA. In Section 5 we discuss our  model for various 
kinds of disorder, and show how the Lloyd model is included in our  model; 
finally, in Section 6 we summarize our main results. 

2. FREENESS, R A N D O M  MATRICES,  AND NONCROSSING 
C U M U L A N T S  

2.1. The Concept of Freeness and Random Matr ices 

The concept of  freeness was introduced by Voiculescu ~12~ in order to 
treat noncommutat ive  random variables in an analogous way as com- 
mutative (classical) random variables are treated by the concept of  inde- 
pendence. From an operational point of  view independence and freeness are 
nothing but rules for the calculation of  mixed moments  of  random 
variables X~, X2,..., if the moments  of  all Xr are given separately. Thus, 
independence of  the X r means 

(Xr(l)Xr(2)Xr(3)'")~( ~I Xr(i))( I~ St(i)) "'" (2.1) 
I r(t) 1 i:r(i)=2 

Freeness replaces this now by the following rule: 

Defini t ion.  XI, X2 .... are free if we have for all m ~  N and for all 
polynomials p,(X),  p2(X),..., p,,(X) of one variable X that 

( P  i(Xrt,}) P2(X,~2~) �9 " �9 P,,,(Xrt.,~) } = 0 (2.2) 

whenever 

( pk( Xr~k)) > =0 (2.3) 

for all k = 1 ..... m and r(k) ~ r(k + 1 ) for all k = 1 ..... m - 1 (i.e., consecutive 
indices are different). 
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First, one should convince oneself that this is really a rule for calculat- 
ing all mixed moments of the Xr's. Let us consider the case of two variables 
X=XI and Y = X  z. For <XY) the definition yields that <XY)=0 if 
<X)  = ( Y> = 0. If X and Y have nonvanishing mean, then by using (2.2) 
for the polynomials p](X) = X -  <X)  ~ and P2(Y) = Y -  < Y) ~ one easily 
finds < XY)  = < X)< Y). Whereas this is the same result as for independent 
X and Y, the calculation of < XYXY)  via 

yields 

O=( (X-- (  X> ~)(Y--< Y> ~ ) ( X - ( X )  ~)(Y--( Y>~)> 

<XYXY)--<X2)<Y>2+<X>2(Y2)-<X)2<Y)2 (2.4) 

and shows thereby that independence (< X Y X Y ) =  < X 2) (y2>) and free- 
ness are quite different concepts. Furthermore, freeness is really a noncom- 
mutative concept: If X, Y are free, we have < XXYY)  = ( X  z ) < y 2 ) ,  which 
shows [of. (2.4)] that X and Y do not commute. Hence X and Y cannot 
be represented by classical c-number random variables. 

There exists a canonical representation of free random variables by 
special kinds of random matrices: Let U(n) be the ensemble of unitary n • n 
matrices equipped with the canonical invariant Haar  measure. Take two 
deterministic n •  matrices A and B (e.g., diagonal matrices) and rotate 
them against each other randomly, i.e., X:=A and Y:=uBu* with 
u~ U(n). Then, in the limit n ~ o o ,  X and Y are free with respect to 
<n - ]  t r [ . . . ] ) a v ,  where <...>,v denotes the average over the ensemble of 
unitary matrices. Note that n-1 t r [ . . .  ] gives the eigenvalue distribution of 
our n x n matrices. This connection between freeness and unitary random 
matrices was first discovered by Voiculescu (~4) and further developed by 
SpeicherJ 2~ Another representation for free random variables with a spe- 
cial kind of distribution by deformed creation and annihilation operators 
will be discussed in Section 5. 

Let us now check that the assumption of freeness of the f r  in the 
Hamiltonian HI results in a definite relation between H0 and H, ,  namely 
they are also free. 

Theorem 1. Let the Hamiltonian H be given by (1.1)-(1.3). If the 
f t ,  f2,-., are free with respect to <...> . . . .  then Ho and HI are also free with 
respect to <...>. Here <...>=<<rol...Iro>> .. . .  independent of r0, and 
<--.>e,s denotes the average over the disorder. 

Proof. Consider polynomials P~, P2 .... and q~, q2 ... .  with 
<p~(Ho)> = 0 =  <qj(H~)> for all i,j. Then we have to show that 

(p~(Ho) ql(Hl)  Pz(Ho) q2(Hl)-- .)  = 0  (2.5) 



1284 Neu and Speicher 

and 

< q l ( H l )  pl(Ho) q2(H1)p2(Ho)...> = 0 (2.6) 

treat  the first case; the second is analogous. Note  that  We only 
(r]  qj(H1) [r'> =6ir, r' qj(fr)" Then 

< pl( Ho) q l( H l ) p2( Ho) q2( Hl )... > 

= <<ro[ Pl(Ho) q t (H l )  P2(Ho)q2(Hl)... [ro>>ens 

= ~ <<rol Pl(Ho)Ir(1)> q,(f~,O 
r ( l ) ,  r ( 2 )  .... 

x <r(1)[ p2(Ho)[r(2)> q2(fr(2))... [ro>>ens 

= ~ <ro[ p~(no)[r(1)><r(1)l p 2 ( n o ) [ r ( 2 ) > . . .  
r( 1 ), r {2 )  .... 

x ( q l ( f ~ , ) )  q2(fr(2))''->ens (2.7) 

Since with Ho also pi(Ho) is translationally invariant,  <rol p~(Ho) [ro> = 
<p~(Ho) ) = 0 implies (r( i)[  p ;+ m(Ho) [r(i)> = 0 for all i, and we can restrict 
the sum to r(i) 's with r(i)#r(i+ 1) for all i. However,  for these terms we 
know that  (ql(fr(1))q2(fr(2)) '">ens =0 due to the freeness of the f / s  and 
<qj(fr~j))>r <qj(H,)> = 0 .  I I  

2.2. Description of Free Random Variables by 
Noncrossing Cumulants 

In the physics of disordered systems, usually Green functions are 
calculated. This leads to the evaluation of mixed moments  o f - - in  our 
case--free  r andom variables. The abstract  definition of freeness ensures 
that  all mixed moments  are determined, but we do not have a concrete 
formula for them so far. An efficient machinery for concrete calculations 
is provided by the noncrossing cumulants.  

Let X~, X 2 .... be free r andom variables. Then we consider quantities 
k,,( Y~ ..... Y,,) for all m/> 1, where the arguments  Y,. are noncommuta t ive  
polynomials  in X~, X2 ..... These k,,, are called noncrossing cumulants and 
one way to define them is the following recurrence formula between the 
moments  and the cumulants:  

m - -  I 

< Y,... r',,,> = y~ Z G + , ( r , .  r,,,,, Y,~_) ..... r',(~ 0 
p=O i ( l ) , . . . , i (p) 

{2..... m} 

X ( Y2... Y,L~-,>< Yir r i12 ) - l> - . . (  Y,p~+, ... Y,,,> (2.8) 
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Starting with k l ( Y l ) = ( Y l ) ,  (2.8) may be used to determine 
k,,( Y~ ..... I'm) successively. The noncrossing cumulants were introduced in 
ref. 19 and further elaborated with regard to stochastic dynamics in ref. 22. 
Examples are (in an obvious notation) k2( 1, 2 ) =  ( 1 2 ) -  ( 1 ) ( 2 ) ;  for the 
special case of centered Yi ( (Y i )  = 0  for i =  1,..., 4), we have k4(1, 2, 3, 4) = 
(1234)  -- ( 1 2 ) ( 3 4 )  -- ( 1 4 ) ( 2 3 ) .  

It follows from the results of ref. 19 that also the following generaliza- 
tion of (2.8) holds: 

( Y , . . . Y , , Y , . + , . . . Y , , + , )  

= (  Y,. . .  Y,,,>< Y,,+ ,... Y,,,+,> 
m I 

+ E E E s r,,,,, r;,,, ..... r;,q,) 
p = l  q = l  i(l),,..,i(p) j(I),...,j(q) 

~ {1,_. ,  m}  c{m+l, . . . ,m+l} 

X ( Y l . . . Y i ( | ~ _ l ) ( Y i c l ) + l . . . Y i ~ 2 ) _ , ) . . . ( Y y ~ q ) + | . . . Y , , + l  ) (2.9) 

Thus, the noncrossing cumulants give the corrections to the fre- 
quently assumed factorization of ( Y~... Y , ,Y , ,+ 1... Y,, +1) into 
( Yl ... Y, , ) (  Y, .+ , ' "  Y,.+,)- 

To derive the connection between freeness and noncrossing cumulants 
we will use another characterization of the noncrossing cumulants [which 
is equivalent to (2.8), (2.9)], namely, they are uniquely determined by 

kl(Y) = ( Y )  (2.10) 

k,,( Y,  ..... Y,, Y ,+,  ..... Y,,)  

= k , , _ t ( Y ,  ..... Y ,Y ,+ ,  ..... I",,) 

i--I 

--  E k m + k - i ( Y I  ..... Y k ,  Y i + l  ..... Ym)  k i - k ( Y k + l  ..... Yi)  
k = 0  

m - 1 

-- Y'. k , , + i - i ( Y l  ..... Yi, Yt+l ..... Y , , ) k l - i ( Y i + l  ..... YI) (2.11) 
d=i+ 1 

Note that in the first term of the rhs of (2.11 ) Y~ and Y,.+~ are multiplied 
with each other, and that in the second and third terms Yk +~ ..... Y~ and 
Yi+, ,..., Yt are skipped in k,, + k- i and k, ,  + i -  t, respectively. Equation 
(2.11 ) allows to reduce all higher cumulants to k~. It is quite easy to derive 
from (2.10), (2.11) the following properties: 

R e m a r k s .  1. k, ,(  Yt ..... Y,,) is a multilinear function in Y~ ..... Y,,,. 

2. k , , (Y~ ..... I"=) ---0 for m~>2 if at least for one i we have Y;={ [of  
course kl({ ) = 1 ]. 
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Up to now we have not used any freeness; we have just defined 
noncrossing cumulants as special polynomials in the moments. That this 
definition gives us indeed the right tool for handling freeness is shown by 
the next proposition (for a more detailed proof see ref. 19): 

Proposition 1. For each i =  1 ..... m let Y; be a polynomial in one 
variable J~r(i) for some r(i), Yj= pi(Xrti)), and assume X1, X 2 .... to be free. 
Then k,,(p~(Xrt ~) ..... P,,(Xrlm~)) = 0 whenever there exists at least one pair 
i, j with iv~j and r(i)v~r(j) (i.e., such that Y; and Yj are free). 

Proof. By (2.11) we can glue together neighboring Y~, Y~§ with 
r( i )=r( i+l)  and hence we can assume that r ( i )~r ( i+l )  for all 
i = 1,..., m - 1. Next, we write again Y; = ( Y i -  ( Y ; )  ~ ) + ( Y i )  ~ and, by 
Remarks 1 and 2, we can restrict ourselves to the case where all Y~ are 
centered, i.e., ( Y ~ ) = 0  for all i =  1 ..... m. But then we can reduce--by 
using (2.11) [or  equivalently (2.8)] and induction--k,,,(Yl ..... Y,,) to 
kl(Yl.. .  Y,,)= ( Y, ... Ym), which vanishes by the definition of the 
freeness, l 

Thus, the quite implicit definition of freeness, namely that very special 
mixed moments in free variables vanish, has now been replaced by the 
statement that all noncrossing cumulants with at least two different free 
variables vanish without any restriction on (pa(X~,~)) (cf. the definition of 
freeness). So we have, e.g., k3(X'l, X~,X2)=0 if X1 and X 2 are free--  
independent of the values of ( X l ) ,  ( X ~ ) ,  and (X2) - -whereas  
k3(X,,X2, XI)~O in general. It is this very property of free random 
variables which will allow us to calculate the one-particle and the two-par- 
ticle Green functions of our model in the next section exactly. Note that the 
noncrossing cumulants play exactly the same role for free random variables 
as the usual cumulants do for independent random variables. 

3. S I T E - D I A G O N A L  A N D E R S O N  M O D E L  A N D  FREENESS 

3.1. The Model  

We consider now the following model of a randomly disordered 
system: The Hamiltonian H is given by H = Ho + Hi ,  where Ho and Hi are 
defined in (1.2) and (1.3), respectively, and where we assume the f~ to be 
identically distributed and free with respect to the average (...)cns. Due to 
our discussion on the relation between freeness and random matrices, we 
also have the concrete realization of our model as a generalized n-orbital 
model [cf. Eq. (1.4)]. According to our remarks around Eq.(2.4), the 
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f,=(u,fut,)'~pffil become free in the limit n - + ~ .  Thus, freeness is the 
correct mathematical notion for the n---, ~-limit.  

It is interesting to note that freeness is already to some extent con- 
tained in the original Anderson model ( f ,  being independent, random 
c-numbers). For instance we find in this case for <HoH~HoHI> the same 
result as in (2.4): 

< HoHI HoHI > = (( rol HoHt HoH1 Iro)) e,~ 

= ( ~ Vlr--roIfrVlro--rlfro } e.s 

2 2 = ~ Vl,-rolVl,o-,l<fi}~ns<fro}r162 
r ~ r o  

= <H I>2<H02 > + <H,2><Ho> 2- <HI>2<Ho> 2 (3.1) 

Thus, the usual Anderson model yields freeness between H 0 and H 1 for 
small moments, but something uncontrollable for higher moments, which 
precludes the model being exactly solvable. 

3.2. O n e - P a r t i c l e  Green Funct ion 

We want to calculate the averaged one-particle Green function ( I P G )  
defined by 

1 
G(r, r'; z): = ((r z _ ~  r')l~n s (3.2) 

In matrix notation this reads 

G(r, r'; z) =n -1 ~, ((r, ~l [ z -  H] -l Ir', ~>)~n~ 
~t 

Let us first concentrate on its diagonal part G(r o, ro; z), which is independ- 
ent of r o due to translation invariance. Let us introduce the short-hand 
notation G(z) := G(r0, ro; z) and <...> := ((rol ... Iro)) . . . .  thus 

G(z )=  (3.3) 
z--(Ho+Hl)  = , = o  z"+ '  
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On calculating this quantity we assume that we know the 1PG of Ho and 
HI separately, 

Go(z)= 
=,, o ,=0 

z ,+ l  -- z - ~ -  (3.4) 

n 

= z ,+l  - ~ (3.5) 
n ~ O  n = O  

Thus, our problem consists in calculating moments of H 0 + H 1 given the 
moments of H 0 and Hj separately, where due to our assumption of the f r  
being free and by Theorem 1, H 0 and H1 are free. In analogy to the usual 
convolution, which describes the sum of independent random variables, we 
have to calculate the so-called f r e e  convolut ion  tI3" 15) of the free random 
variables H 0 and H 1 . At this point the difficulties with the usual Anderson 
model become evident: Independence of f l ,  f2 .... does not imply a definite 
relation between H 0 and H 1 so that no well-defined notion of convolution 
between the distributions of Ho and HI exists. 

Theorem 2. Let the Hamiltonian H be given by (1.1)-(1.3), where 
f~, f2 .... are free and identically distributed. Then the diagonal part  of the 
1PG is given by 

G(z)  = Go[ z - R~[  G(z)] ] (3.6) 

where R I is determined by 

1 
G l ( z )  = (3.7) 

z--RI[GI(z)] 

The off-diagonal part of the 1 PG is given via the Fourier transform 

by 

G(r,  r'; z )  = fq (~(q; z)  e iq(r- ~') (3.8) 

1 
t~(q; z ) =  (3.9) 

z - ~(q) - R1 [ G(z)] 

where 

v r _ r" = f q v( q ) e iq~r- ~'~ 
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Here, 

f q ~/" 
:= (2;r a fIBz ddq 

~/: is the volume of the first Brillouin zone (1BZ). 

R e m a r k .  Note that the diagonal part G(z) entirely determines the 
off-diagonal part since with (~o(q;z)= [ z - ~ ( q ) ]  -~, Eqs. (3.8) and (3.9) 
are equivalent to 

t .  t .  G(r, r ,  z )= Go(r, r ,  z -  Rl[ G(z) ]) (3.1o) 

Proof. We first prove Theorem 2 for the diagonal part of the 1PG. 
Proposition 1 implies that the noncrossing cumulants of H =  H0 + Hi are 
additive, i.e., 

k,,( H) = k,,( Ho) + k,,( H~ ) (3.11) 

with the short-hand notation kin(H):=k,,(H, .... H). Hence the free con- 
volution is linearized by the noncrossing cumulants as the usual convolu- 
tion is linearized by the usual cumulants. It remains to derive a relation 
between the noncrossing cumulants and the 1PG. If we specialize (2.8) to 
Yt . . . . .  Y,, = H we obtain 

m--p 

( H " )  = ~. 
p =  1 j{ l) , . . . , j{p)=O 

j ( I ) + . . .  + j ( p ) = m - - p  

kp(H)(H -"I)) ...(H -ir (3.12) 

If we now define 

R(w) := ~ w"km+l(H) (3.13) 
m ~ O  

then we find with (3.3), (3.12) the relation 

1 
G(z) = (3.14) 

, R[G(z)] 

Thus, R can be considered as the self-energy of G(z), which depends self- 
consistently on G(z) itself. Relation (3.14) and its equivalent form 

G[R(w)+ w-'] =w (3.15) 
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are due to Voiculescu, r who calls R the R-transform of H. The derivation 
given here using noncrossing cumulants was first given in ref. 19; for a 
dynamical generalization see ref. 22. In the same way we can write 

1 
Go(z) = (3.16) 

z -  Ro[Go(z)] 

1 
G,(z) = (3.17) 

z - R ~ [ G d z ) ]  

where 

Ro(w):= ~ w"km+l(Ho) (3.18) 
r n ~ 0  

Rt(w) :=  ~ wmkr,+l(Hl) (3.19) 
m = 0  

Because of (3.11 ) R is also additive 

R(w) = Ro(w ) + Rl(w ) (3.20) 

Defining y by G(z) = Go(y), we get 

z-- Ro[ G(z) ] - R~[ G(z) ] = y - Ro[ Go(y) ] = y -  Ro[ G(z) ] 

and thus z - R t [ G ( z ) ] = y ,  from which we finally derive (3.6), which 
proves together with (3.17) the first assertion of our theorem. Note that 
(3.6) reduces to (3.7) if we put H o = 0 :  then Go(z)--z - t  and G=G~. Note 
also that there is only an apparent asymmetry between Ho and H~, since 
we may write in the same way 

G(z) = G~[z-  Ro[ G(z) ]] (3.21) 

Let us now treat the off-diagonal part of the 1PG. Again, our assumption 
of freeness of the f r  will guarantee that we can derive an exact expression 
for G(r, r', z). Using Dyson's equation gives 

G(r, r'; z) = Go(r, r'; z) 

+ ~ ~ <Go(r, r l ;z)L,  Go(rl,r2;z)f~v..f~.,Go(r,,,r';z)>ens 
r n ~  l r l , . . . , r  m 

=Go(r,r';z)+ ~ • Go(r, rl;z)...Go(r,,,r';z)(f~,...f.,,)~ns 
m ~  1 r l , . . . , r  m 
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=Go(r,r';z)+ ~ ~. Go(r,r];z)...Go(rm, r';z) 
m = l  rl,. . . ,rm 

m - -  1 

x ~ E kp+,(fr,,fr,,,, ..... fr,,v,) 
p = O  i(1), . . . , i tp} 

{2,..., m~ 

x (fr2""f,,(,~-,)(f,,=,)+, ""fr,(2)-,}'"(f,,~.,'"fr.) (3.22) 

where we have used the recurrence formula (2.8) for the noncrossing 
cumulants. Due to the freeness of the f t  and Proposition 1, only such terms 
contribute where r I = r i ( i )  . . . . .  r i ( p )  , which yields after some resumma- 
tions 

G(r, r'; z) = Go(r, r'; z) 

+ ~. ~ Go(r, rl ; z) kp+ l(f~,) G(rl, rl; z) p G(rl, r'; z) 
p =  1 rl 

=Go(r,r';z)+R][G(z)]~Go(r, rl;z) G(rl,r';z) (3.23) 
rl 

where we have used kv(frt)=kp(Hl) and G(z)=G(rt,rt;z). Note that, 
once G(z) is known, (3.23) is a linear system of equations for G(r, r'; z) 
which can be solved by Fourier transformation. Then, Eq. (3.23) reads 

G(q; z) = Go(q; z) + R~[G(z)] Go(q; z) G(q; z) (3.24) 

which yields with 

1 ~o(q; z ) = -  (3.25) 
z -- O(q) 

the second assertion, Eq. (3.9), of our theorem. | 

We finally comment on the analytic structure of the solution (3.6). By 
definition G(z), Go(z), and Gl(z) are holomorphic functions in the upper 
complex half-plane C +. However, it is a priori not clear whether G(z) 
initially defined by Eq. (3.6) only in a neighborhood of ~ has an analytic 
continuation to C+. 

Clearly, the implicit definition of G(z) by (3.6) is unique except for 
the critical points z~C + where G'(z)=0.  Let us denote this set 
by D={z~C+IG'(z)=O} and by A=G(D) their critical values; 
analogously, we define Dj and zlj for j = 0 ,  1. Then Voiculescu has 
shown (~6) for compactly supported measures of Ho and HI and G(z) 
implicitly given by (3.6) that: 
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R 1 

I 
I 

- + 

Fig. I. Diagrammatic representation of Eq. (3.23). Rl[G(z) ] can be interpreted as an effec- 
tive local potential which scatters the propagating electron incoherently at each lattice site. 

1. G(C+)cGo(C+)oG1(C+). 
2. Rj[Gj(z)] ( j = 0 ,  1, 2) has an analytic continuation from ~ to C + 

(here G2 = G, R2 = R). 

3. If Ao c~ A~ = ~3, the function y(z) := z -  Rl[G(z)] has an analytic 
continuation from ~ to (2 +. 

The assumption Ao c~ A~ = ~ implies that if w -~ +Ro(w)--which is 
the inverse of Go [cf. Eq. (3.15)]--has a branching point of order p > 1 at 
~o, then Go is not a branching point of w -~ +R~(w) and hence Go is a 
branching point of order exactly p for w-~ + R(w)."6> This guarantees the 
uniqueness of the analytic continuation of Eq. (3.6). This assumption is not 
restrictive for practical purposes in physics as long as the measures of Ho 
and H~ do not coincide. However, in this case we know due to the freeness 
of Ho and H1 (cf. Theorem 1) that R(w)=2Ro(w)= 2Rl(w). 

Before we develop further our formalism for the 2PG, let us give 
R l[ G(z)-] a clear physical interpretation. The diagrammatic representation 
of Eq. (3.23) is shown in Fig. 1, in obvious notation. Thus, R~[G(z)] 
behaves like an effective local potential which scatters the propagating elec- 
tron incoherently at each lattice site. The total scattered wave is the sum 
of the contributions from each lattice site without interference terms. From 
this viewpoint our model has CPA character. We will come back to this in 
Section 4. 

3.3. Two-Part ic le  Green Function 

In this section the averaged two-particle Green function (2PG) 

f:(r,s,s',r';z~,z2):=((r z ~  sl(S'lz21~--HIr'lle, s (3.26) 
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will be calculated. In matrix notation this reads 

f#(r, s, s', r'; zl, z2) 

= n - '  ~" ((r,o~l E z , - H ] - '  Is, f l ) (s ' , f l l  E z 2 - n ] - '  Ir',oC))en~ 
a, f l  

We define the 2PG of H~ by 

(;11 __1 )__(:, ,) 
fg,(Zl, z2):= --H1 z 2 - H  __froZ2--fr en, (3.27) 

From the identity 

( Z l - Z 2 ) ~  ( (r  ~ s ) ( s  1 

II Zl--Z2 r ' ~  
= r ( Z  1 _ - ~ . / ) - ~ z 2 _ H )  r 

= G(r, r'; z2) -G(r ,  r'; zl) (3.28) 

one obtains the sum rule 

( z l - z 2 )  ~ . fg ( r , s , s , r ' ; z l , z2 )=G(r , r ' ; z2 ) -G(r , r ' ; z l )  (3.29) 
$ 

which reduces for ff~ to 

(z~ - z2) ~l(z,, z2) = Gl(z2) - G,(zl) (3.30) 

The 2PG of our model is now given by the following theorem. 

Theorem 3. Let the Hamiltonian H be given by (1.1)-(1.3) where 
f~, f2,--, are free and identically distributed. Let further G(z) and G(r, r'; z) 
be given by (3.6)-(3.9). Then, for Im zl/2#O 

fg(r, s, s', r'; z 1 , z2) = G(r, s; zl) G(s', r'; z2) 

-k- ~1[ G(ZI), G(z2) ] 

x ~ G(r, r"; zl) ~(r", s, s', r"; Zl, z2) G(r", r'; z2) (3.31 
r" 

where ~(w~, w2) is determined by 

Rl(wl)--Rl(w2) 
~l(wl, w2)= (3.32) 

W 1 - -  W 2 
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R e m a r k .  Note  that, once the 1PG is known,  (3.31) is a linear 
system of equations for the 2PG. 

Proof. Again we use Dyson 's  equat ion to obtain 

t t .  Z I ~  Z 2 )  if(r,  s, s ,  r ,  

m ~ | r I , . . . ,  r m 

{ ,. }) x Gds ' , t , " ' z~)+ ~ Go(s ' , s t ; z2 ) f~ , . . . f s ,  Go(s~,r ,z2)  
I = 1  S l . . . . . s t  ens 

(3.33) 

As before, we can express this in terms of the noncrossing cumulants  by 
using relation (2.9) for ( f r , ' " f rm f s , ' " f s l ) "  Due to the freeness o f f l , f 2 , . . .  
we can again use Proposi t ion 1 and therefore we can restrict the summa-  
tion in (2.9) to terms with 

ri( D . . . . .  ri(p) = Sj(l) . . . . .  Sj(q) 

After some resumrnation we finally obtain 

r . t .  " z 2 ) = G ( r , s ; z l ) G ( s ' , l  ,z2) qJ(r, s, s , r , .~ I, 

+ ~ ~ k r + q ( H l ) G ( r ,  " " ' z l )G( r" , r " ; z l )  p - i t  , 
p ,  q = I r "  

(d~ [ r II r It �9 • 0~ , s, s', z l ,  z2) G(r", t ,  .... z2)q- ] G(r", r," z2) 

(3.34) 

Defining 

~ l ( W l , W z ) : =  ~" kp+q(H1) wPl- lw q- I  
p . q = l  

= E k,,(I-I,) Z w;- 'wV'  
n = l  p , q > ~ l  

p + q = n  

n n 
= k , (H1)  w l - w 2  

n =  1 W I  - -  W 2  

yields, with (3.19), Eqs. (3.32) and (3.31). II 

(3.35) 
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r s r s r r "  s 

r ~ 

Fig. 2. 

= + 

S ~ r~ S t r '  r ; '  S' 

Diagrammatic representation of Eq. (3.31). ~1 [ G(zl ), G(z2)] can be interpreted as an 
effective local electron-electron interaction. Equation (3.31) has a ladder structure. 

Following Wegner  (8) [his Eqs. (4.18)-(4.21)],  one easily shows that  
Eq. (3.31) is consistent with the sum rule (3.29). Using this sum rule 
together with (3.32) yields the relation 

~l,[G(z~),G(z2)]Y'.~(r,s,s,r;z,,z2)= RI[G(z])]-RI[G(z2)] (3.36) 
s Z I  - -  Z 2  

which closely resembles a Ward  identity. Since R ~ [ G(z 1 ) ] is the self-energy 
of the 1PG the lhs may  be interpreted as a vertex function. The structure 
of Eq. (3.31) permits still another  characterization of ~ [ G ( Z l ) ,  G(z2)] as 
a local effective electron-electron interaction. This becomes particularly 
pronounced if one represents (3.31) diagrammatical ly  as in Fig. 2. Thus 
Eq. (3.31 ) has a ladder structure with an effective electron-electron interac- 
tion �9 ~ [ G ( Z l ) ,  G(z2)]. This interaction is a contact  interaction, i.e., after 
averaging, the two electrons propagate  independently through the lattice 
unless they meet at same site. As for the 1PG, our model  resembles the 
CPA in character.  We come back to this in Section 4. 

3.4. Long-Range Behavior and Conductivi ty  

3.4.1. Long-Range Behavior. To discuss the long-range 
behavior  of  the 2PG,  let us consider its connected par t  for r = r'  and s = s' 

C(r,s;zl,zz):=qJ(r,s,s,r;z],zz)-G(r,x;zl)G(s,r; z2) (3.37) 

and its Fourier  t ransform 

~(q; z~, z2) =Y', C(0, r; z,, z2) e ;~r (3.38) 
r 

The disconnected part  of  the 2 P G  yields only a short-range contr ibution 
and will not be discussed in the following. 
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Defining ~12(r, s, Zl, .Z2) := G(r, s; z ,)  G(s, r; z2) and its Fourier trans- 
form 

c#12(q; zl, z2) : = ~  G(r, 0; z,)  G(O, r; z2) e iqr 
r 

=~q, G(q'; z,) G ( q ' - q ;  z,_) (3.39) 

with G(q; z) given by (3.9) and using (3.31), one obtains with the abbrevia- 
tion ~,  - ~l[G(zt) ,  G(z2)] 

~'(q; z,, z2) = -~,(f~2(q; z,, z2)) 2 + ~ f~t2(q; z,, z2) C(q; zt, z2) (3.40) 

which has the solution 

C'(q; z,, z 2 ) -  ~1(c#12(q; z,, z2)) 2 (3.41) 
1 - -  , ~ i  (~12(q; Zl,  Z2) 

Now we want to show that C(0; z~, zz) diverges if z, and zz approach 
the same energy E from different halves of the complex plane along the 
branch cut of G, that is, for 

1 
Q(E)-~-~. [ G(E--iO+ )--G(E + i0+)] ~ 0  

ZT~t 
(3.42) 

This follows from the decomposition 

(~(q; z:) -G(q ;  z,) 
G(q; Zl) (~(q; z2) - 

z, - RI[ G(z,) ] -- z2 + Rl[  G(z2) ] 
(3.43) 

where we have used (3.9), which yields 

1 Z 2 - - i  l G(o; Z2) ZI, 
----~11 -[ ~I(~" l - - ' ~ 2 ) -  ~ .~2(G(z2)-  G ( : [ ) )  

(3.44) 

Thus the denominator of (3.41) vanishes for q = 0 and lim z,/2 =E,  since 
the second term of (3.44) vanishes because of (3.42). From this one con- 
cludes that C'(q; z,, z2) has a diffusive pole. 

To make this explicit we take 

E 1 = E _ l c o  Z 1 ~ + 2 697 Z 2 (3.45) 
2 
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where E is real and co has an imaginary part of sign s. Inserting this in 
(3.44) and assuming following Wegner (s) cubic symmetry with coordina- 
tion number n, one finds by expanding around q = 0 in leading order for 
small ~o and q2 

logs ) - t 
n~(q; zj, 2.2) = 2n'~o(E~ + Aq~- (3.46) 

with 

- \ Q ( E ) /  Oq 2 Iq=o 

(3.47) 

Here we have used (3.32) to write 

~/?~ [ G(E + i0+), G ( E -  i0+)]  

R,[ G(E- iO +) ] -  R~[ G(E + i0+)]  

G ( E - i O + ) - G ( E  + iO +) 
= ~ (3.48) 

e(E) 

with the measure of Rt[G(z)] 

1 
Ft(E) := ~m' { R t [ G ( E -  iO + )] - R,[" G(E+ iO + )]} (3 .49/  

In the case of the Gaussian .ensemble with covariance M we will show in 
Section 5 that #( E) = Mo( E), i.e., ~ = M ,  so that we find Wegner's 
result ~s) [his Eqs. (4.40)-(4.41)]. Thus Eq. (3.46] merely differs from the 
corresponding solution for the Gaussian ensemble by a redefinition of the 
constant A. The function ~(q; zl,  z2) essentially determines the long-range 
and the co ~ 0 limit of the 2PG. Without further calculations one concludes 
from this that the qualitative behavior of the long-range and the co--* 0 
limit of the 2PG.does not depend on the distribution of the disorder in the 
electronic level space. 

In more detail, following Wegner (s~ (his Section V), one sees from 
(3.46) with the definition of the wave vector 

-- kos ~ 1/2 
~r = \ ~ /  , Re tc > 0 (3.50) 

822/80{5-6-24 
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that eigenstates separated by an energy difference co are correlated in phase 
over a length 

t = I~1 - '  = [2nAQ(E)/Icol ] 1/2 ( 3 . 5 1 )  

which diverges as Icol-,/2 as co--. 0. Furthermore, by Fourier backtransfor- 
mation and dimensional analysis one finds for fixed r,~ L and energies in 
opposite halves of the complex plane differing by co that C(0, r; z~, z.2) 
approaches a finite value provided d > 2, diverges logarithmically as a func- 
tion of co for d = 2 ,  and like Icol d/2-' for 0 ~<d< 2, respectively, for co ~ 0. 
This implies that for d >  0 the eigenstates are extended since C does not 
diverge as fast as Ico1-1. Up to a redefinition of the constant A this is the 
same result as for the Gaussian ensemble ts~. 

3.4.2. Conductivity. The 2PG determines the conductivity ~rr(co) 
via the Kubo-Greenwood relation tgl 

2 e  2 oc, 

Here, n r ( E ) =  {exp[(E-EF)/T] + 1} -~ is the Fermi distribution, EF is 
the Fermi energy, and tr(co, E) is the current-current or the density-density 
spectral function t8~. 

At T =  0 and in the dc limit co--* 0 the conductivity is given by the 
spectral function itself 

2 e  2 
ar=o(co) = ~--~7 a(co, EF), co ~ 0 (3.53) 

where the spectral function tr(co, EF) is given by the connected part of the 
2PG, ts~ yielding 

ar=o(co--*O)=4n-~co ~ C q;Ev+-2 +isO+'Ev--2 +isO+ q=O 

2zre2nA 
- - - - 7 - -  02(EF) (3.54) 

Using the definition of A in (3.47) and the Fourier transform (3.9), we can 
also give this result as follows: 

2z~e2nB 2 E 
ar=o(co-~0)  = ~ -  P ( F )  (3.55) 
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where p(Ev)  is the spectral function of R~[G(z)]  [cf. (3.49)] and 

(~0(EF)X~2 _ O ~ I 2 ( q ; z I ' Z 2 )  q =  O 
B := A ~ u - - ~ J  Oq~- (3.56) 

The last two equations show that the dc conductivity at zero temperature 
is essentially given by the square of the spectral function of the Fourier 
transform of the 1PG. Again this result differs from that for the Gaussian 
ensemble by a mere redefinition of the constant A. From this one concludes 
that the conductivity is nonvanishing everywhere inside the band, and that 
localization cannot occur in our model. 

4. C O H E R E N T - P O T E N T I A L  A P P R O X I M A T I O N  

One of the most effective approximation methods for the Anderson 
model is the (single-site) coherent-potential approximation (CPA) initially 
proposed by Soven ~5) and Taylor. ~6) Its main idea can be summarized as 
followsC3'4): One introduces an effective homogeneous medium with the 
propagator Go(r, s; z - Z )  with an effective potential Z in which the elec- 
tron moves and demands 

G(r, s; z) = Go(r, s; z -  27(z)) (4.1) 

In other words, the CPA calculates G from an effective Hamiltonian 
Herr = H o + Z r  Z [ r ) ( r ] .  The coherent potential Z is determined in such a 
way that the difference between the actual and the effective Hamiltonian, 
H - H e r r ,  produces on the average zero scattering at one site, i.e., the 
averaged single-site t matrix vanishes 

( t ( z ) )  := 1 - ( f r - Z ' )  G(z) 

where G(z) =_ G(r, r; z) is given by 

G(z) = Go(z - 27(z)) (4.3) 

Due to the translation invariance, t(z) is site independent. Velick~, ~7) has 
worked out this.concept for the 2PG and has found the following CPA 
equation for the 2PG: 

~(r, s, s', r'; zl,  z2) 

= G(r, s; zl ) G(s', r'; z2) 

+ .o~(zl, z2) ~ G(r, r"; z l)  C~(r", s, s', r"; z l ,  zz) G(r", r'; z2) (4.4) 
r o 
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where G is given by (4.1) with Z" satisfying (4.2) and 

<t(z) t(z') > 
s176 z') - (4.5) 

1 + G(z)<t(z) t(z')> G(z') 

Here < t(z) t(z')> contains all contributions from repeated scattering at the 
same site. Thus the 2PG is given as the sum of single-site contributions in 
agreement with the general CPA philosophy. 

In view of (4.1) and (4.4) the solutions of our model (3.6) and (3.31) 
have CPA character. This was already realized by Wegne{ s) and 
Khorunzhy and Pastu{ 9~ for the n-orbital model. Wegner showed that the 
n -+ ~ limit of his model yields the CPA solution of the Anderson model 
provided that the fr  are distributed according to the semicircle law. ~s~ In 
general the connection between the CPA and models like Wegner's 
n-orbital model is not clear (see the discussion in ref. 9). 

Here, we will show that the concept of freeness allows us to put the 
CPA on a firm mathematical basis, namely, we can prove the following 
theorem: 

T h e o r e m  4. Let the Hamiltonian H be given by (1.1)-(1.3) where 
f~, f2 .... are fi'ee and identically distributed according to a distribution P. 
Then, the solution for the 1PG given by Theorem 2 and the solution for 
the 2PG given by Theorem 3 are identical to the CPA solution of the 
Anderson model where the f t ,  fz .... are independent and identically dis- 
tributed with the same P. 

Proofi We first prove the assertion of the theorem for the IPG. We 
show that (3.6) and (3.7) solve the CPA equations (4.1) and (4.2) if we 
identify -~(z)= R~[G(z)]. Using this to rewrite the CPA condition (4.2) as 

<t(z)> = ~, <[ f~- -R, (w)]">  w " - '  (4.6) 

where w := G(z), one finds 

< t ( 2 ) >  . . I - L =  ~,, < [ f r _ _ R l ( W ) ]  n> W ' ' - 1  
W tt~0 

n=O k=O 

= <f~> k [--wR'(w)]"-k Wk-' 
k=O n k 



Rigorous Mean-Field Model for CPA 1301 

1 o~ ( f ~ )  

= ~ ~o-= ER,(w) + 1/w] k +1 

G1 [.,(w)+-lwl 
1 

w 
(4.7) 

i.e., < t (z )>=0 .  Here, we have used the equivalent form of (3.7), 
G~[Rt(w) + l/w] = w, and the identity 

=• a "-k  = (4.8) 
,, k k ( l - a )  k+l 

To prove the assertion of the theorem for the 2PG we show that s176 z') = 
~t I [ G(z), G(z')]. We first calculate the average of the product of the single- 
site t matrices 

L - z  L-z'  > 
A(z , z ' ) :=<t(z ) t ( z ' )>= 1 - ( f , . - Z ) G I - ( f , . - Z ' ) G '  (4.9) 

where we have used the abbreviations G = G ( - ) ,  G '=G ( - ' ) ,  Z = Z ( z ) ,  
Z' =Z(~ ). The average can be evaluated using (4.2). Identifying S( z )=  
RI[G(z)], one finds 

RIEG]-RIEG']  
A(z, z') - (4.10) 

G - G '  + GG'(R~[ G'] - R I [ G ] )  

which reduces with Eq. (3.32) to 

A(z, z') = .~1[ G, G'] / (I  - ~I [G,  G'] GG') (4.11) 

Solving this equation for ~1 yields the rhs of (4.5) and therefore proves the 
second assertion of our theorem. II 

In the CPA both the 1PG and the 2PG are entirely determined by the 
coherent potential Z(z) which follows self-consistently from (4.2) and (4.3). 
In our model Z(z) is given by Voiculescu's R-transform R1 of the disorder. 
Thus the prescription (3.7) for calculating R 1 can be considered as the 
formal solution of the CPA equations for arbitrary disorder. 
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5. DISCUSSION OF SPECIFIC DISTRIBUTIONS 

5.1. Deterministic Noise 

Let us start with the trivial case where all f r  are deterministic, attain- 
ing the constant y, i.e., they have a ~ ( f , - y )  distribution for all r. Then, 
G l ( z ) = [ z - y ]  -1,  hence R l ( w ) = y  [cf. Eq. (3.7)], hence ~l(Wl, W2)=0 
[cf. Eq. (3.32)]. This yields the following solution for the Green functions: 

G(z) = Go(z - y) 

1 
t~(q; z) (5.1) 

z - ~7(q) - ~, 

! t .  t .  fg(r, s, s ,  r ,  zl , z2) = G(r, s; 21) G ( S ' )  l" , Z2) 

i.e., the connected part  C of the 2PG vanishes. Since for deterministic f,. 
there is no difference between independence and freeness, this is also the 
exact solution of the original Anderson model. Of  course, it is just given by 
a trivial energy shift ?, of the unperturbed solution. 

5.2. Cauchy (Lorentz) Noise: The Lloyd Model  

Consider now the Lloyd model where the f ,  are distributed according 
to a Cauchy distribution with parameter y, i.e., 

d P ( f ,  = e) = 1 ~ e2 de (5.2) rc y2 

Note that moments and thus also cumulants of H1 do not exist in this case, 
but nevertheless our main formulas for the connection between G~(z) and 
Rl(W) can be justified in this case, too. (23'24) We have 

l f ~  y 1 d e =  1 
Gl(z)=rc  -o~ y 2 - ~ - g z z - - / ~  z + i y  (5.3) 

hence R l ( w  ) = is?,, with s being the sign of the imaginary part of w. Using 
(3.32), one sees that 9~1(Wl, w2)=0  if Wl and w 2 are on the same halves of 
the complex plane, and 

2/s~y 
~ l (w l ,  w2)= - -  (5.4) 

W 1 - -  W 2 
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if w] and w2 are on opposite halves. Thus in the former case, we find the 
same result as in (5.1) with y replaced by iy. In the latter case the connected 
part  C of the 2 P G  does not  vanish, so that  one finds a finite conductivity 

2e2nB 2 
a t =  o(O~ --' 0) = ~  ~ (5.5) 

with B = -- [Of~z(q)/3q z ] Iq =o. 

5.3 Gaussian Random Mat r ix  Noise: The W e g n e r  Model  

Wegner 's  model  consists in choosing the f r  to be - - i n  the limit 
n---, ~ - - s y m m e t r i c  n x n Gaussian r andom matrices with the entries of  f~ 
and of f~, being independent for r :/: r'. As explained in Sections 2. l a n d  3.1, 
this means nothing but that  the f~ are free. Thus Wegner 's  model  is the spe- 
cial case of  ours where the distribution of the f~ is given by the eigenvalue 
distribution of symmetric  Gaussian r andom matrices, i.e., by Wigner 's  
semicircle law, 

P(f~ = e) = 2n---1-1-~ (4M - e 2) 1/2 de (5.6) 

for e2~< 4 M  and zero elsewhere. The fact that  Gaussian r andom matrices 
are free explains quite naturally Wegner 's  observat ion that his model  gives 
the same result as the CPA with a semicircle distribution applied to the 
Anderson model. 

For  the semicircle law one has 

z - (z 2 - 4M)u2 1 
G](z) = 2 M  - z - M G I ( Z )  (5.7) 

which yields R ] ( w ) = M w .  This means that  only the second noncrossing 
cumulant  is different from zero and thus we have ~ ( w ] ,  w2) - -M.  This 
gives the following solution: 

G(z) = Go[z - m G ( z ) ]  (5.8) 

1 
(~(q; z) - (5.9) 

z - ~(q) - MG(z )  

C(q; Zl, z2) - M(C~12(q; z , ,  z2)) 2 (5.10) 
1 -- M~12(q; zl ,  z2) 

2tte2nA 
O ' T =  0 ( 0 )  ~ O )  - -  - -  o2(E) (5.11 ) 
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with A = - - M 2 [ O f ~ 1 2 ( q ) / O q 2 ] l  q = o- These formulas were found by Wegner ts) 
and later rederived by Khorunzhy and Pastur. tg~ The deformed semicircle 
law (5.8) has also appeared earlier in the work of Pastur (2s) as the solution 
for the problem of determining the eigenvalue distribution of a sum W +  D 
of a symmetric Gaussian random matrix W and a nonrandom diagonal 
matrix D. By our remarks in Section 2, this latter problem is nothing but 
calculating the free convolution of the distribution of W and of D, and 
hence, in the light of Theorem 1, the coincidence of Wegner's and Pastur's 
result appears as no surprise. 

One should also note that in the context of the free convolution the 
semicircle distribution plays the same role as the Gaussian distribution 
for the classical convolution. This can be seen, for instance, from the fact 
that only the second noncrossing cumulant is different from zero for the 
semicircle distribution, similarly as only the second usual cumulant is 
nonvanishing for the Gaussian distribution. For more details on the "free 
Gaussian" and related topics, such as free central limit theorem or free 
Poisson law, we refer to refs. 15, 17, and 23. 

5.4. q-Noise: An Interpolation 

In ref. 26 we introduced a new class of stochastic processes which 
interpolate continuously between classical, Gaussian, random matrix, 
dichotomic, and Poisson processes. This construction can be adapted for 
quenched multisite disorder as follows: Let the disorder at each site r be 
given by 

fr  := a(ar+ at,.) + ~a~ar (5.12) 

in terms of deformed annihilation and creation operators a,., a~ on some 
Hilbert space ~ .  These operators satisfy at each site r the deformed 
canonical commutation relations 

t t" _ ara,.--qatar- 1 (5.13) 

ar 10) =0 (5.14) 

where 1 and [0) denote the identity operator and the vacuum in ~f~, 
respectively. At different sites r ~  r' the operators are assumed to be free, 
implying that f~, f2 .... are free, i.e., 

a~a*,.,=O, r~r '  (5.15) 

The deformation parameter q is real and varies continuously in the interval 
- 1  ~<q~< 1. For ~ = 0 ,  the limiting cases q = l  and q = - I  describe 
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Gaussian and dichotomic disorder, respectively, whereas the case q = 0 
corresponds to Wegner's n-orbital model. The ~a~ar term allows us to 
include Poisson-like disorder, t26''-7) 

Equation (5.15) is an alternative representation of those free random 
variables which can be represented by deformed creation and annihilation 
operators�9 To make the construction clear, let us formulate the original 
Anderson model for Gaussian site-diagonal disorder (q = 1, ~ = 0) in this 
language: f r : = a ( G + a ~ )  with a~a~,-a~,a~=6~,r , l  for all r,r ' ,  in par- 
ticular, arar,* --a~,ar for rvar' ,  which is clearly different from (5.15)�9 

We can now identify moments of the random variables f r  in (1.3) with 
the Hilbert space vacuum expectation values of products of f~ by means of 
a generalized Wick theorem, t26" 28) By using the partial cumulants we have 
calculated the 1PG of H l [cf. Eq. (36) in ref. 26] 

1 
G ( z )  = 

z - R l [ G ( z ) ]  

1 

o-2q~O) 
z 

z - ~qlO~ _ 

o-2q(l I 

z - - ~ q  I') 
0.2q( 2 } 

z - ~q~2~ _ ~ (3) 

=: 1/(Z -- (aZq~~ - ~q~O) _ (trEqll)/( z _ ~q~l) 

_ (rr2q~2)/( z _ ~q~2)_ (tr2q(3)/...)...) (5.16) 

where 

q(k):= 1 + q + q 2 +  . . .  + q k = _ _  
1 _qk+l 

1 - q  
(5.17) 

Thus, 

R1[ G(z) ] = G(z) trZq{~ 1 + G(z)( R l [  G(z) ] - ~q(O)) 

+ (G(z)'- a2qllJ/(1 + G( z ) (R I [G(z ) ]  _~q~ll )  

+ (G(z)  3 a'-q{2)/( 1 + G(z ) (R l  [ G(z) ] - ~q~ 2~) 

-4- (G(z) 4 o'2q13)/...)...) (5.18) 
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which together with 

G(z) = Go[z - R, [ G(z)] ] (5.19) 

is a closed set of nonlinear self-consistent equations for the 1PG and R~(w). 
The continued fraction (5.18) can be summed in closed form for q = - 1 ,  
where one finds, for ~ =0 ,  R,[G(z)] = { [l+4tr2G2(z)] l / z -  1}/2G(z), and 
for q = 0 ,  where one finds, for 4 = 0 ,  Rl[G(z)]=tr2G(z) and thereby 
Wegner's model with tr2= M. 

6. S U M M A R Y  

In this paper we have applied the concept of free random variables, 
invented by Voiculescu in a mathematical context, to the tight-binding 
Hamiltonian with site-diagonal disorder of an electron in a periodic solid. 
The difference of our model from the usual Anderson model lies in the fact 
that instead of assuming the disorder to be independent at different lattice 
sites, we have assumed it to be free. 

Both freeness and independence can be considered as a rule for 
calculating mixed moments of random variables. In contrast to the case of 
independent disorder, free noise does imply a treatable relation between Ho 
and H1: they are also free. This finally allows us to close the infinite 
hierarchy of equations of motion and to calculate all physically relevant 
quantities. 

In Section 3 we have argued that in the limit n--* ~ free noise can be 
represented by n x n random matrices which are randomly rotated against 
each other at different lattice sites, starting from a matrix with fixed but 
arbitrary eigenvalue distribution in the limit n---, ~ .  In this sense, our 
model is an extension of Wegner's n-orbital model for the Gaussian ensem- 
ble to arbitrary eigenvalue distribution in the energy level space. A striking 
property of our model is that both the long-range behavior and the zero- 
frequency limit of the 2PG are universal with respect to the eigenvalue 
distribution in the energy level space. 

One surprising feature of the Wegner model is that its solution coin- 
cides with a special CPA solution. This generalizes also to our model. In 
Section 4 we have shown that our solution for the 1PG and the 2PG also 
solves the CPA equations for the Anderson model with the same distribu- 
tion of disorder. Note that we specify our model rigorously in the begin- 
ning and that we are able to calculate all quantities without any further 
approximation. Thus our multisite model is a rigorous mean-field model 
for the usual single-site CPA. The R-transform of Voiculescu, R~, may be 
considered as the formal solution of the CPA equations for arbitrary disor- 
der. It possesses the physical interpretation as an effective local potential; 
the corresponding quantity for the 2PG, ~ ,  can be considered as an effec- 
tive local electron-electron interaction. Cleary, as seen in Section 5, aside 
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from some specific dis t r ibut ions ,  bo th  functions cannot  be calculated 
analytically.  However ,  due to the ment ioned  universali ty,  the Wegner  
model  is exemplary  in many  respects and it might  be sufficient to restrict 
oneself to this case in the general  frame of a mean-field approximat ion .  

Fur the rmore ,  our  descr ipt ion using the theory of  free r andom 
variables and the not ion of  noncross ing cumulants  allows a s t ra ightforward 
general izat ion to the case of  dynamica l  d isorder  and thus promises  to give 
a r igorous model  for dynamica l  CPA. These subjects will be pursued 
further in for thcoming investigations. 
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